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Abstract—In vivo, in vitro and computational studies were
used to investigate the impact of the synaptic background
activity observed in neocortical neurons in vivo. We simu-
lated background activity in vitro using two stochastic Orn-
stein-Uhlenbeck processes describing glutamatergic and
GABAergic synaptic conductances, which were injected into
a cell in real time using the dynamic clamp technique. With
parameters chosen to mimic in vivo conditions, layer 5 rat
prefrontal cortex cells recorded in vitro were depolarized by
about 15 mV, their membrane fluctuated with a S.D. of about
4 mV, their input resistances decreased five-fold, their spon-
taneous firing had a high coefficient of variation and an
average firing rate of about 5–10 Hz. Brief changes in the
variance of the �-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid (AMPA) synaptic conductance fluctuations in-
duced time-locked spiking without significantly changing the
average membrane potential of the cell. These transients
mimicked increases in the correlation of excitatory inputs.
Background activity was highly effective in modulating the
firing-rate/current curve of the cell: the variance of the simu-
lated �-aminobutyric acid (GABA) and AMPA conductances
individually set the input/output gain, the mean excitatory
and inhibitory conductances set the working point, and the
mean inhibitory conductance controlled the input resistance.
An average ratio of inhibitory to excitatory mean conduc-
tances close to 4 was optimal in generating membrane po-
tential fluctuations with high coefficients of variation. We
conclude that background synaptic activity can dynamically
modulate the input/output properties of individual neocorti-
cal neurons in vivo. © 2003 IBRO. Published by Elsevier Ltd.
All rights reserved.
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The response of cortical neurons in vivo to a repeated
sensory stimulus is highly variable (Softky and Koch, 1993;

Holt et al., 1996; Shadlen and Newsome, 1998). Since the
spike generating mechanism in vitro shows considerably
more reliability and precision than observed in vivo
(Mainen and Sejnowski, 1995; Fellous et al., 2001), most
of the in vivo variability is likely due to the variability of
synaptic inputs (Zador, 1998). The level of synaptic back-
ground noise has significant consequences for the input/
output characteristics of an individual cortical neuron and
affects its ability to detect transient or sustained input
signals (Destexhe and Paré, 1999; Destexhe et al., 2003).

Correlated firing in small groups of neurons may occur
in response to a stimulus (Sejnowski, 1976; Gawne and
Richmond, 1993; Shadlen and Newsome, 1998; Bair,
1999; Bazhenov et al., 2001) and may be modulated by
attention (Steinmetz et al., 2000; Fries et al., 2001; Salinas
and Sejnowski, 2001). Recent computational studies indi-
cate that the synaptic correlations resulting from a sus-
tained increase in presynaptic synchrony may significantly
modulate the incoming synaptic noise statistics and can
influence the firing rate and the firing variability of a
postsynaptic neuron (Salinas and Sejnowski, 2000; Svir-
skis and Rinzel, 2000; Tiesinga et al., 2000). In many
cortical systems however, signals are transient rather than
sustained. In the visual cortex for example, visual stimuli
produce transient synchronization lasting tens of millisec-
onds in subpopulations of neurons (Zador, 1999; Fabre-
Thorpe et al., 2001; Keysers et al., 2001; Reinagel and
Reid, 2002). Cortical neurons should be capable of detect-
ing these increases in input correlation despite intrinsic
membrane noise and background synaptic activity as pre-
dicted by modeling studies (Rudolph and Destexhe, 2001).
It has been difficult to experimentally assess the correla-
tion detection ability of a cell mainly because the classical
techniques do not allow for the manipulation of the level of
correlation between synaptic inputs. Recently Chance et
al. (2002) have explored these issues in vitro using a
dynamic clamp. We extend these results by independently
varying the magnitudes and variability of the excitatory and
inhibitory conductances injected into neurons.

A precise characterization of synaptic background ac-
tivity based on intracellular recordings in vivo was only
possible in preparations where the animal is anesthetized
(Paré et al., 1998). In this condition, the magnitude and
time structure of synaptic inputs cannot be easily manipu-
lated, and the neurochemical environment of a neuron
cannot be easily monitored. In an in vitro preparation how-
ever, precise control of the stimulation patterns, a tight
control of the neurochemical environment, and a realistic
level of intrinsic membrane noise are possible. However,
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neurons in vitro have a greatly diminished amount of spon-
taneous synaptic activity because of the slicing procedure
and their membrane potentials typically remain constant
well below threshold. In contrast, spontaneous synaptic
inputs in vivo can produce on average a membrane depo-
larization of about 15 mV, voltage fluctuations of 10 mV in
amplitude (4 mV S.D.), an 80% decrease in input resis-
tance, and a baseline discharge (2–10 Hz) with a high
coefficient of variation (Paré et al., 1998; Destexhe and
Paré, 1999; Destexhe et al., 2003).

In order to study the input/output characteristics of
neurons that receive background synaptic noise, we used
the dynamic clamp technique (Sharp et al., 1993) to create
a real-time interface between a neuron recorded in vitro
and a computer model of in vivo synaptic background
activity. In this hybrid preparation, the stimulation of a
neuron and its neurochemical environment can be tightly
controlled, the intrinsic membrane noise is intact, and sim-
ulated background in vivo-like synaptic noise is injected
into the neuron. Synaptic background activity can be ex-
plicitly simulated by large numbers of excitatory and inhib-
itory synapses that release randomly (Bernander et al.,
1991; Destexhe and Paré, 1999; Svirskis and Rinzel,
2000; Tiesinga et al., 2000). Previous work has shown
that, at the soma, the synaptic input resulting from the
activation of thousands of inhibitory and excitatory synaptic
conductances distributed throughout the dendritic tree is
statistically equivalent to two independent fluctuating point-
conductance injections modeled as Ornstein-Uhlenbeck
(OU) stochastic processes (Destexhe et al., 2001, 2003).

In this study, we first investigated the parameter
ranges within which synaptic background activity modeled
as OU conductances restores in vivo-like passive and
active properties in cells recorded at their soma in vitro.
Using a detailed compartment model, we then examined
how changes in the correlations of synaptic inputs resulted
in predictable changes in the variance of the membrane
potential voltage at the soma. This change in variance can
be simulated in a point-conductance model by changing
the variance of the stochastic process describing excita-
tory inputs. In order to investigate transient changes in
synchrony in cells receiving continuous synaptic back-
ground inputs, we studied the spiking probability of cells in
response to brief changes in the variance of this stochastic
process. Finally, we examined the firing rate sensitivity to
sustained current injections (firing-rate vs. current (F-I)
curve) as a function of the mean and variance of the
simulated synaptic background activity.

EXPERIMENTAL PROCEDURES

In vivo experiments

The methods used in the in vivo preparations are similar to those
described elsewhere (Henze et al., 2000). Three Sprague–Dawley
rats (300–500 g) were anesthetized with urethane (1.65 g/kg;
Sigma) and placed in a stereotaxic apparatus (Kopf, Tujunga, CA,
USA). The body temperature of the rat was monitored and kept
around 35 °C. A small portion of the skull was drilled (about
1 mm�1 mm) above the pre-limbic/infra-limbic areas of the pre-
frontal cortex (2.0 mm anterior from Bregma, 1.0 mm lateral, in

either hemisphere) and cells were recorded about 3 mm below the
surface. The dura mater was carefully punctured to expose the
brain tissue. A 0.9% NaCl solution was used to keep the opening
moist. Intracellular recordings were obtained using 1.8 mm or
2.0 mm capillary glass (Sutter Instrument Inc., Novato, CA, USA)
filled with 1 M potassium acetate (80–120 M�, determined using
bridge balancing). Once the electrode tip was placed in contact
with the brain, the hole was filled with a mixture of paraffin (50%)
and paraffin oil (50%) to prevent the drying of the brain and to
decrease pulsations. The electrode was then advanced using a
Sutter MP-285 micromanipulator (depth: 1.0 mm–4.0 mm) to ob-
tain intracellular recordings. Amplification was achieved using an
Axoclamp 2A amplifier (Axon Instruments, Foster City, CA, USA)
in current clamp mode and data were digitized using a PCI16-E1
data acquisition board (National Instrument, Austin, TX, USA).
Data acquisition rate was 10 kHz. Six putative pyramidal cells
were recorded (regularly spiking with adapting responses to cur-
rent pulses). Two of these cells exhibited up and down states.
Because these states are driven by structured synaptic activity
(Lewis and O’Donnell, 2000) they were not considered in a state
of ‘background’ synaptic activity, and were discarded from our
analysis. The four other cells were used in this study.

In vitro experiments

Coronal slices of rat pre-limbic and infra limbic areas of prefrontal
cortex were obtained from 2–4 week old Sprague–Dawley rats.
Rats were anesthetized with Isoflurane (Abbott Laboratories, IL,
USA) and decapitated. Their brain were removed and cut into
350 �m thick slices using standard techniques. Patch-clamp was
performed under visual control at 30–32 °C. In most experiments
Lucifer Yellow (RBI; 0.4%) or Biocytin (Sigma; 0.5%) was added to
the internal solution. In some experiments, synaptic transmission
was blocked by D-2-amino-5-phosphonovaleric acid (50 �M), 6,7-
dinitroquinoxaline-2,3, dione (10 �M), and bicuculline methiodide
(20 �M). All drugs were obtained from RBI or Sigma, freshly
prepared in ACSF and bath applied. Whole cell patch-clamp re-
cordings were achieved using glass electrodes (4–10 M�) con-
taining (mM: KmeSO4, 140; HEPES, 10; NaCl, 4; EGTA, 0.1;
Mg-ATP, 4; Mg-GTP, 0.3; phosphocreatine 14). Data were ac-
quired in current clamp mode using an Axoclamp 2A amplifier.
Extracellular stimulation (Fig. 1B) was conducted with a large tip
(100 �m) bipolar electrode (FHC, Bowdoinham, ME, USA) placed
between layers 2/3 and layer 5, about 100 �m away from the cell’s
main axis. The electrode was attached to an analog stimulus
isolation unit (Getting Instruments, IA, USA) commanded by the
data acquisition computer (see below). We used regularly spiking
layer five pyramidal cells.

All in vitro voltage measurement were corrected for the liquid
junction potential. This junction potential is negligible when sharp
electrodes are used (as in the in vivo experiments described
above) because the concentration of ions in the electrode is high
and because the ions’ mobility is similar. For the patch clamp
technique however, this junction potential cannot be neglected. In
control experiments we measured the junction potential. We first
placed the internal solution in the bath and we zeroed the ampli-
fier. We then replaced the bath solution by the standard ACSF and
measured the junction potential in current clamp mode. The junc-
tion potential was consistently between 8 and 10 mV (9 mV�1;
three electrodes, five measurements), so we subtracted 10 mV
from all the measurements obtained in vitro, in current clamp
mode. Details of the estimation and measurements of liquid junc-
tion potentials can be found elsewhere (Barry and Lynch, 1991;
Barry, 1994; Neher, 1995).

Histology

Cell staining (Fig. 5A, inset) was conducted using a standard
diaminobenzidine procedure. Slices were fixed for at least 4 h in a
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Fig. 1. Simulating synaptic inputs with dynamic clamp. A: In vivo recording of a layer 5 pyramidal cell in rat prefrontal cortex. Note the variable pattern
of discharges (CV�1.1, average firing rate 2.1 Hz), the large membrane potential fluctuations (S.D. of 4.8 mV) and the level of depolarization (average
membrane potential was 	66 mV). The input resistance was 38 M�. B: Experimental protocol in vitro. Dynamic clamp was implemented as a fast loop
(0.1–0.83 ms) in current clamp mode: Somatic membrane voltage was read, the instantaneous synaptic conductance was computed and used with
the current membrane voltage to produce the synaptic current that was then injected back into the cell. We recorded from layer 5 pyramidal cells, and
stimulated in layers 2/3. The right panels show an example of the application of this protocol. Trace 1 shows the membrane voltage of a layer 5
pyramidal cell recorded in vitro with no point conductance clamp. The two lower traces show the membrane voltage (Vm, trace 2) resulting from the
injection of the synaptic current (Isyn, trace 3) computed in real time with the point-conductance model. (Ge0�5 nS, Gi0�25 nS, 
e�5 nS, 
i�12.5 nS).
C: Sample free running voltage trace of a cell in vitro undergoing simulated synaptic background activity. The parameters of the point conductance
clamp were adjusted to mimic the in vivo behavior of the cell in A (Ge0�5 nS, Gi0�25 nS, 
e�3 nS, 
i�6.2 nS). Input resistance was 41 M�, average
membrane potential was 	65.8 mV, S.D. of the membrane potential fluctuations was 4.6 mV, the CV was 0.92 and average firing rate was 2.5 Hz.
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i�12.5 nS). The input resistance was reduced from 230 M� to 52 M�.
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solution of 4% paraformaldehyde. Sections were then washed 20
min with 1% H2O2 to eliminate endogenous peroxidase. Slices
were repeatedly (4�5 min) washed in a phosphate-buffered saline
containing 2.5% dimethyl sulfoxide. Following 2 h incubation in
avidin biotin complex (ABC kit; Vector Laboratories, Burlingame,
CA, USA), the peroxidase product was revealed using tetrameth-
ylbenzidine using the following procedure. Slices were incubated
for 20 min in a phosphate buffer solution (0.1 M; pH 6.0) contain-
ing 0.4% ammonium chloride and 0.001% tetramethylbenzidine.
This reaction was stabilized by incubating the tissue for 15 min in
a phosphate buffer containing 0.4% NH4Cl, 1% cobalt chloride,
0.1% diaminobenzidine and 0.05% H2O2. Slices were then
mounted and dried for tracing using a Neurolucida system (Micro-
brightfield Inc., Colchester, VT, USA).

Data acquisition

Data were acquired using two computers. The first computer was
used for standard data acquisition and current injection. Programs
were written using Labview 6.1 (National Instrument), and data
were acquired with a PCI16-E1 data acquisition board (National
Instrument). Data acquisition rate was either 10 or 20 kHz. The

second computer was dedicated to dynamic clamp (Fig. 1B).
Programs were written using either a Labview RT 5.1 (National
Instrument) or a Dapview (Microstar Laboratory, Bellevue, WA,
USA) front-end and a language C backend. Dynamic clamp
(Sharp et al., 1993; Hughes et al., 1998; Jaeger and Bower, 1999)
was implemented using a PCI-7030 board (National Instrument) at
a rate of 1.2 kHz, or a DAP-5216a board (Microstar Laboratory) at
a rate of 10 kHz. Dynamic clamp was achieved by implementing
a rapid (0.83 ms or 0.1 ms) acquisition/injection loop in current
clamp mode. There was no difference between the two experi-
mental setups; therefore, all data were pooled. All experiments
were carried in accordance with animal protocols approved by the
N.I.H. Efforts were made to minimize the number of animals used
and their suffering. A total of 33 pyramidal cells were used in this
study.

Data analysis

Fitting procedures were based on the Nelder-Mead minimization
method with a tolerance of 1% (Nelder and Mead, 1965). To have
a good estimate of the coefficient of variation, the histograms of
inter-spike intervals (ISIs) were fitted by a gamma distribution (Fig.
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Fig. 3. The reduction of input resistance is mainly due to inhibitory synaptic inputs. Independent variation of average excitatory (A) and inhibitory (B)
conductances in the same cell. The cell was initially tuned to yield about 80% reduction of input resistance (Gi0�75.2 nS, Ge0�15.2 nS). Gi0 and Ge0

variations are plotted with respect to these standard values (labeled 100%). The percent reduction of input resistance (Rin) from the control condition,
without point conductance-clamp (321 M�), to the input resistance with point conductance-clamp depended linearly on Gi0, but did not depend on
variations in Ge0. Four independent measurements in the standard conditions (labeled 100%) were performed at different times during the experiment
to estimate the variability of the resistance estimation procedure. C: Group data for five pyramidal cells. Ge0 and Gi0 are initially tuned to yield a
reduction of 75%. Gi0 is then varied. The reduction in input resistance depended linearly on Gi0 (slope of the linear fit: 258%/�S). All points were
calculated on the basis of an average of five hyperpolarizing pulses (20–140 pA) each repeated five times. D: dependence of input resistance on Ge0

and Gi0 in the point conductance model (see Experimental Procedures and Fig. 5B).
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4A) of the form:

P�t��
��r�r�t	�d�

r	1e	�r�t	�d�

�r�
for t��d

where �, �d and r were free parameters such that ��1/(�ISI�-�d),
r�1/(
ISI �)2 �d�0 was the ‘dead time, and (r) is the gamma
function.’ For a Poisson distribution r�1. Across all conditions, the
binning of the histograms of the ISIs remained fixed at 100, and
the highest bin was six times the mean ISI. We found that these
values ensured a good fit, irrespective of average firing rate and
experimental variability. The coefficient of variation (CV) was cal-
culated using the values of the fit:

CV�
1

�r�1��d��

Spike probability was computed as the ratio n/nt, where n is the
number of spikes elicited during the stimuli and 5 ms after the
stimuli offsets, and nt was the total number of spikes recorded.

For Figs. 7 and 8, the amplitudes of the input were expressed
in units of the S.D. of the background noise (labeled ‘signal-to-
noise ratio,’ or SNR), so that an amplitude of 1 corresponded to
the case where the S.D. of the fluctuations during an input tran-
sient and before the transient were identical. When no background
noise was included, the amplitudes of the signal current pulses
were represented in the units of the S.D. of the noisy case, so that
an amplitude of 1 corresponded to the S.D. of the background
current injected in the noisy condition when no inputs were
present.

Data were analyzed offline using MATLAB (The Mathworks,
Natick, MA, USA).

Results are given as mean�S.D.

Computational modeling

Computational simulations were performed using two morpholog-
ically reconstructed models of cortical neurons. Simulations were
performed based on a cat neocortical pyramidal layer 6 neuron
from parietal cortex extensively studied and tuned to experimental
data (total membrane area 34,636 �m2; details in Contreras et al.,
1996), and a rat prefrontal cortex layer 5 pyramidal cell obtained
for the purpose of this study (total membrane area 28,642 �m2;
Fig. 5A, inset). This cell was recorded using the patch clamp
technique while synaptic transmission was blocked. The resting
membrane potential was 	81 mV. The cell input resistance was
185 M� and was computed as the slope of the V-I curve obtained
from a series of hyperpolarizing pulses of different amplitudes.
The cell time constant was 37�5 ms and was obtained using the
fit with a double exponential of the voltage drop elicited by 6
hyperpolarizing pulses of varying amplitude, repeated at least
three times.

For the cat cell, passive model parameters were adjusted to fit
intracellular recordings obtained after application of TTX and syn-
aptic blockers (Destexhe and Paré, 1999) and they were kept
constant over all simulations. An axial resistivity of Ra�250 �cm,
membrane resistivity of Rm�22 k�cm2 (Rm�50 k�cm2 in the
axon), and capacitance of Cm�1 �F/cm2 (Cm�0.04 �F/cm2 in the
axon) were used, where Cm was increased and Rm were de-
creased by a factor of 1.45 to account for the surface correction
due to dendritic spines (DeFelipe and Fariñas, 1992). Ra and Rm

for the rat cell were fitted to results obtained from hyperpolarizing
current injection in vitro, and were Ra�50 �cm and Rm�67
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k�cm2 (Rm�50 k�cm2 in the axon). The same values for spine
correction and capacitance were used as in the case of the cat
cell.

Voltage-dependent conductances were inserted in the soma,
dendrites and the axon of each reconstructed cell to simulate
active currents (sodium current INa, delayed-rectifier potassium
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onset. Top: Sample trace showing two spontaneous spikes (*) and four evoked spikes. Note that the membrane potential of the cell was not
significantly affected by the 10 stimuli. Middle: Spike rastergram with about 100 of 200 trials shown. Inset: The thin curve shows the average membrane
potential computed around all transients, in all trials. The thick curves represent the S.D. of the membrane potential around the transient. Note that
the average membrane potential during the transient stayed within the S.D. of the membrane noise (horizontal dashed lines). Inset scale bars�4 mV,
30 ms. Bottom: spike histogram (10 ms bins) of the rastergram above, showing clear peaks at the time of stimuli onset. The cell’s average membrane
potentials (actions potentials truncated at 	50 mV) outside and inside the 
e pulses were 	68.1 mV (�3) and 	67.1 mV (�4.2) respectively. B: Left:
Signal detection capability (probability that an action potential indicated the presence of a transient input) for varying transient lengths. The dashed
curve corresponds to the cell shown in panel A. Note that this cell is able to detect about 50% of 10 ms long stimuli. The cell had a spontaneous firing
rate of about 1 Hz. The four other curves are from a different cell. Four different levels of spontaneous firing (1.1 Hz, 2.5 Hz, 3 Hz and 7 Hz
corresponding to Ge0 values of 10, 13, 17, 24 nS, Gi0 fixed at 60 nS) are represented. Right: The point conductance model reproduces qualitatively
the experimental data. Note that for low spontaneous firing rates, the detection capabilities of the cell depended non-linearly on transient lengths
(model and experiments).

J.-M. Fellous et al. / Neuroscience 122 (2003) 811–829818



current IKd and voltage-dependent potassium current IM). All cur-
rents were described by Hodgkin-Huxley type models with kinetics
taken from a model of hippocampal pyramidal cells (Traub and
Miles, 1991), adjusted to match voltage-clamp data of cortical
pyramidal cells (Huguenard et al., 1988). For the rat cell, maximal
dendritic conductance densities of 44.8 mS/cm2 (30.9 mS/cm2 in
soma, 309 mS/cm2 in axon) for INa, 8.6 mS/cm2 (6 mS/cm2 in
soma, 60 mS/cm2 in axon) for IKd, and 0.43 mS/cm2 (0.3 mS/cm2

in soma) for IM (no IM in axon) were used. Slightly larger values of
52.3 mS/cm2 (36.1 mS/cm2 in soma, 361 mS/cm2 in the axon) for
INa, 10.1 mS/cm2 (7 mS/cm2 in soma, 70 mS/cm2 in axon) for IKd,
and 0.51 mS/cm2 (0.35 mS/cm2 in soma) for IM (no IM in the axon)
were used for the cat cell.

Synaptic currents were incorporated using two-state kinetic
models of glutamate �-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid (AMPA) and GABAA receptor types (Destexhe et al.,
1994) with quantal conductances of 869 pS for distal regions, 600
pS for proximal region for AMPA and 1739 pS for GABAA. The
contribution of NMDA receptors was assessed in control experi-
ments. In a few simulations NMDA currents were included along
with AMPA currents (see Results). No metabotropic receptors
were included. For both cells, the densities of synapses in different
regions were estimated from morphological studies of neocortical
pyramidal cells (White, 1989; Larkman, 1991; DeFelipe and Fari-
ñas, 1992; e.g. 16,563 glutamatergic- and 3376 GABAergic-sim-
ulated synapses for the cat cell). An accelerating algorithm (Lyt-
ton, 1996) was used to perform the simulations in a time-efficient
manner.

Synaptic background activity was explicitly simulated by the
random activity of inhibitory and excitatory synapses according to
Poisson processes with average rates of 5.5 Hz for GABAA syn-
apses, and 1.0 Hz for AMPA synapses. These firing rates were
chosen to account for the average low probability of release at
excitatory synapses and were estimated from intracellular record-
ings of pyramidal neurons before and after application of TTX
(Paré et al., 1998; Destexhe and Paré, 1999). The statistics of the
synaptic background activity was modified by introducing a corre-
lation in the random background activity. To accomplish this, we
introduced some redundancy in the release events, without
changing the mean release rate at single terminals (and therefore
without change in the overall synaptic conductance). N0 indepen-
dent Poisson-distributed streams of release events were redistrib-
uted among all N synapses, which for N0�N led to a co-release of
several synapses, whereas the release at each terminal still fol-
lowed a Poisson process (see details in (Destexhe and Paré,
1999; Rudolph and Destexhe, 2001). A correlation of 0 was ob-
tained when N0�N, and a correlation of 1 for N0�1 (Destexhe and
Paré, 1999; Rudolph and Destexhe, 2001).

Current injections resembled the protocol used in the exper-
imental setup, and consisted of a 3 s current pulse from which F-I
curves were obtained. The un-normalized F-I curves were fit to a
sigmoid of the form:
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Fig. 7. Effect of simulated synaptic background noise on the detection of transient current pulse injections. The continuous curves show the sigmoid
fits to the data points (circles) representing the spiking probability of a cell undergoing simulated synaptic noise (Ge0�7 nS, Gi0�26 nS, 
e�2.5 nS,

i�7.5 nS, spontaneous firing 0.5 Hz) in response to 20 ms current pulses of increasing amplitudes. The cell was able to detect amplitudes as small
as 2.8 times the S.D. of the current resulting from the injection of the synaptic noise. The firing probability was however smaller than 0.5. The dashed
curves were obtained when the same cell did not receive simulated synaptic noise but was kept depolarized at the same average level as in the case
with fluctuating synaptic noise (Ge0�7 nS, Gi0�26 nS, 
e�0 nS, 
i�0 nS, spontaneous firing 0 Hz, data points represented by crosses). Current
pulses smaller than 4.5 times the S.D. of the current resulting from of the noise injected previously rarely succeeded in eliciting spiking. Above this
value, the probability of spiking rapidly became 1. Each data point was obtained from 200 trials. Each curve was established on the basis of at least
10 data points. The experiment was repeated four times in each condition to assess the robustness of the data acquisition and analysis procedures.
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where the “working point” is defined as the stimulus amplitude
corresponding to 50% of the maximal asymptotic firing rate, and
the “gain” is defined as the maximum slope.

All simulations were performed using the NEURON simulation
program (Hines and Carnevale, 1997), running on Dell computers
(Dell Computer Corporation, Round Rock, TX, USA) under the
LINUX operating system.

Point conductance model

A simplified model of synaptic background activity was incorpo-
rated into one-compartment models with membrane area, passive
settings and voltage-dependent currents INa, IKd and IM appropri-
ate for the cat and rat pyramidal cells.

The synaptic background activity was simulated as a fluc-
tuating point conductance, as previously described (Destexhe
et al., 2001). The total synaptic current injected in dynamic
clamp was calculated as the sum of two independent conduc-
tances

Isyn�t��Ge�t��V�t�	EAMPA��Gi�t��V�t�	EGABA�

where EAMPA and EGABA are the reversal potentials for AMPA and
GABAA conductances (0 mV and 	75 mV respectively), and V is
the instantaneous membrane voltage of the recorded pyramidal
cell. The fluctuating conductances Ge and Gi are given by two OU
processes (Uhlenbeck and Ornstein, 1930):
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Fig. 8. Enhancement of correlation detection by background synaptic noise. Probability that an action potential indicated the presence of a transient
input of 10 ms (top), 20 ms (middle) or 30 ms (bottom) as a function of the amplitude of the input. In all panels, open symbols represent experiments
with synaptic background noise (Ge0�14 nS, Gi0�22.5 nS, 
e�5 nS, 
i�12.5 nS). In these experiments, inputs consist in a short (10 ms, 20 ms or
30 ms) increase in the S.D. of the background noise. In this condition, the spontaneous firing rate was about 1 Hz. Crosses represent experiments
without synaptic background noise. In these experiments, the cell was depolarized to a resting level equivalent to the mean membrane potential with
point-conductance clamp, and inputs consisted in short (10 ms, 20 ms or 30 ms) current pulses of varying amplitude. In this condition, the cell did not
have a spontaneous firing rate. The curves are sigmoid fits of the data points. Each point is computed from 120 trials. In the case where synaptic
background noise was included, the detection of the input signal (P�0.5; dashed lines) occurred for inputs amplitudes smaller than when no synaptic
background noise was included (filled arrows and opened arrows respectively).
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dGe�t�
dt

�	
1
�e

�Ge�t�	Ge0���De�1�t�

dGi�t�
dt

�	
1
� i

�Gi�t�	Gi0���Di�2�t�

where Ge0 and Gi0 are average conductances, and �e and �i are
time constants (2.7 ms and 10.7 ms respectively throughout this
study), �1(t) and �2(t) are Gaussian white noise terms of unit S.D.,
De and Di are the “diffusion” coefficients, and Ge and Gi are
Gaussian variables with S.D.s �e��De�e/2 and �i��Di�i/2 respec-
tively. The procedure used for numerical integration of these
stochastic equations is detailed elsewhere (Destexhe et al., 2001).

This formulation allows for an analytical expression of the
power spectral characteristics of Ge and Gi (Gillespie, 1996). In
previous work we showed that 
e, 
i, Ge0 and Gi0 can be tuned to
match the S.D. and power spectral characteristics of the overall
excitatory and inhibitory synaptic conductances measured at the
soma of a reconstructed cat pyramidal cell undergoing random
synaptic inputs (Destexhe et al., 2001). This study showed that,
irrespective of the cell morphology, best fits were obtained for
Gi0�5Ge0 and 
i�2.5
e. Unless otherwise noted, 
e, 
i, Ge0 and
Gi0 will follow these constraints. Intracellular recordings during
periods of intense network activity revealed an average Vm of
about 	65 mV when IPSPs reverse around 	75 mV, and of about
	51 mV when IPSPs reverse at 	55 mV, as obtained with chlo-
ride-filled sharp electrodes (Destexhe and Paré, 1999). These
values imply that chloride-mediated events (presumably GABAA

conductances) dominate the overall conductance due to network
activity.

Simulations of the point conductance model were performed
with NEURON, and Visual C�� (Microsoft) was used to program
the dynamic-clamp current injections from Labview RT, or
Dapview.

RESULTS

Recreation of in vivo-like activity

Intracellularly recorded (n�5) layer 5 pyramidal cells of rat
prefrontal cortex in vivo under urethane anesthesia exhibit
large fluctuations in their membrane potentials, accompa-
nied by occasional spontaneous discharges (Fig. 1A).
These membrane fluctuations had a S.D. of about 4 mV
(3.9�0.5 mV; n�4), the average membrane potential was
around 	65 mV (	65�2.6 mV; n�4), and the spontane-
ous discharge rate was highly irregular with a CV around 1
(0.94�0.17; n�4) and an average firing rate of about 4 Hz
(3.7�1.5 Hz; n�4). The input resistances of these cells
were around 40 M� (44�14 M�; n�5) and were low
compared with in vitro recordings. These characteristics
obtained under urethane anesthesia in rat prefrontal cortex
were similar to those obtained in cat parietal cortex in vivo
under ketamine-xylazine anesthesia (Paré et al., 1998;
Destexhe and Paré, 1999).

In contrast, the slice preparation of rat prefrontal cortex
showed little spontaneous activity. Intracellularly recorded
layer 5 pyramidal neurons (n�21) in this in vitro prepara-
tion had no spontaneous firing, and their membrane po-
tentials were almost constant around a resting value of
	82�3 mV (n�21), as shown for the cell in Fig. 1B1. We
attempted to mimic in vivo conditions in vitro using a sto-
chastic model of background synaptic activity, imple-
mented by the real-time injection of a fluctuating conduc-
tance (Fig. 1B, left) obtained as the sum of two random

processes with time constants given by AMPA (2.7 ms)
and GABAA (10.7 ms) postsynaptic conductances varia-
tion (see Experimental Procedures). Fig. 1B3 shows the
current resulting from the injection of these two fluctuating
conductances, and Fig. 1B2 shows the corresponding
membrane potential. Fig. 1C shows a free running bout of
activity of a prefrontal cortex cell in vitro undergoing sim-
ulated synaptic background activity. With the proper pa-
rameter tuning, this cell mimicked the measurements of
background activity obtained in vivo (Fig. 1A; Paré et al.,
1998; Destexhe and Paré, 1999): It had a low input resis-
tance (41 M�), an average membrane potential of 	65.8
mV (an estimated 10 mV junction potential was subtracted
from the measured membrane potential; see Experimental
Procedures), a S.D. for the membrane potential fluctua-
tions of 4.6 mV, a CV of 0.91 and an average firing rate of
2.5 Hz. Because this cell was not bursting, its CV was
slightly lower than that typically obtained from in vivo re-
cordings (Holt et al., 1996). Also, the membrane potential
in vitro contained more spectral power at high frequency
than that obtained in vivo. The conductances were fit to the
spectral characteristics of the excitatory and inhibitory so-
matic conductances measured on a reconstructed multi-
compartmental cell receiving a realistic distribution of
16,563 glutamatergic synapses and 3376 GABAergic syn-
apses releasing in a Poisson fashion at 1 Hz and 5.5 Hz
respectively (Destexhe et al., 2001). Additional simulations
were conducted to assess the influence of NMDA recep-
tors on input resistance and average depolarization level.
In these simulations, NMDA receptors were paired with
AMPA receptors, with an NMDA/AMPA conductance ratio
that was varied between 0 and 0.5 (McAllister and
Stevens, 2000; Watt et al., 2000). GABAA synapses were
left unchanged. The simulations showed than the input
resistance changed by less than 5% and Vm changed by
less than 4% in comparison with the model where only
AMPA and GABAA receptors were included (not shown).
These results show that a judicious choice of the first two
moments (mean and S.D.) of synaptic background activity
for excitation and inhibition (captured here by two OU
processes) are sufficient to capture essential in vivo char-
acteristics in vitro.

The input resistance of a cell determines how much
current will be required to bring it to threshold, and hence
the minimum synaptic input needed to elicit a spike. We
attempted to reproduce the five-fold increase in input re-
sistance observed in vivo when background activity was
suppressed by TTX (Paré et al., 1998; Destexhe and Paré,
1999). We first tried to mimic these in vivo conditions by
using a large stimulating electrode to stimulate the affer-
ents to a pyramidal cell recorded intracellularly in vitro (Fig.
1B, right panel). The stimulation patterns were Poisson
trains (120 Hz and 200 Hz) of pulses of variable amplitude
(Fig. 2A, lower trace). During the synaptic stimulation,
negative pulses of different amplitudes were somatically
injected (time t1 in Fig. 2A), and the input resistance was
computed as the slope of the resulting I-V curve. Fig. 2B
shows that the average membrane potential only in-
creased by about 9 mV in this cell, while the input resis-
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tance decreased only by a factor of 1.25. Changing the
extracellular stimulation strength and frequency was un-
successful in generating more than a 1.5-fold decrease of
input resistance (1.4�0.3; n�5).

In contrast to the results of extracellular stimulation, the
simulation of synaptic activity using the point-conductance
clamp depolarized the cell by about 16 mV and decreased
its input resistance by a factor of 4.4, closer to what would
be observed in vivo (Fig. 2C). The point conductance
clamp was constrained by four main parameters: The av-
erage excitatory Ge0 and inhibitory Gi0 conductances, and
their S.D.s 
e and 
i respectively (see Experimental Pro-
cedures). A systematic variation of these parameters re-
vealed that the reduction of input resistance was mainly
due to the mean level of inhibitory conductance Gi0 (Fig.
3A and B). The relationship between the reduction in input
resistance and average inhibitory conductance was linear
(Fig. 3C) with an increase in the mean inhibitory conduc-
tance yielding a proportional decrease in input resistance
(slope: 260%/�S). The point-conductance model repro-
duced well these experimental findings (Fig. 3D), and fur-
ther explained why such a reduction in input resistance
occurred; As Gi0 was increased, the membrane potential
became dynamically ‘clamped’ to the reversal potential of
GABA (	75 mV), and any voltage deflection produced by
a current pulse was apparently reduced, if it tended to push
the membrane potential away from 	75 mV. Because the
absolute values for Gi0 were about four times greater than
for Ge0 (from the rest, about 	60 mV, the differential to the
GABA reversal (15 mV) is four times smaller than the
voltage differential to the AMPA reversal potential (60
mV)), it follows that Rin should be more sensitive to Gi0
variation than to Ge0 variations. In general, this sensitivity
should not be strictly linear because it depends on the
voltage dependence of the currents active at rest. How-
ever, Fig. 3 shows that the linear approximation gave a
good fit. Changes in the S.D. of excitatory and inhibitory
inputs introduced no significant change in input resistance
(not shown).

Firing variability

The spontaneous firing pattern of cells recorded in the
point-conductance model were highly irregular. The ISI
histogram had the shape of a � distribution (Fig. 4A). The
best fits of the ISI distribution with a � function yielded low
r coefficients (see Experimental Procedures; 2.2�0.5;
n�7), indicating that the ISI distribution approximated a
Poisson process with refractory period. A measure of the
spiking irregularity was given by computing the CV of the
ISIs, defined as the ratio of the S.D. of the ISIs to its mean.
For the cell shown in Fig. 4B, the CV reached a steady
state value (less than 3% variation per 20 s) of about 0.7
after about 150 s. The CV depended on the mean excita-
tory conductance Ge0 (Fig. 4C). In this cell, the CV was
maximal for Gi0 to Ge0 ratios between 4 and 5 (4.3�1.1;
n�4 with maximum average CV of 0.83�0.04). For high
Gi0/Ge0 ratios the cell had a low firing rate (about 1 Hz for
Ge0�0.0025 �S) and large regular ISIs. This regularity at
low frequencies may be due to a slow inactivation of a

spike-induced potassium current (such as a slow calcium-
dependent IAHP or slowly inactivating potassium currents).
Further pharmacological studies would be required to bet-
ter characterize these currents. For low ratios, the cell
tended to fire at higher rates (19 Hz for Ge0�0.011 �S)
with a low CV that was obtained when the CV vs. time
curve reached a stable state (less than 3% variation per
20 s). CV2 yielded qualitatively the same result because
there was no significant modulation of the firing rate during
the data collection (Holt et al., 1996). Since the excitatory
driving force is about four to five times larger than the
inhibitory driving force, these results indicate that the firing
variability is maximal (CV highest) in conditions where the
excitatory and inhibitory currents are about equal, in other
words when excitatory and inhibitory inputs are balanced
(Shadlen and Newsome, 1994; Troyer and Miller, 1997).

These results provided a basis for the choice of the
values of the parameters of the two OU processes that
describe synaptic background activity. 
e was set to yield
an appropriate level of membrane fluctuations (about 4
mV; typical values range between 3 and 10 nS), Ge0 was
set to yield an appropriate level of average depolarization
and background firing (15 mV depolarization and 5–10 Hz
respectively; typical values range between 5 and 15 nS),
and the value of Gi0 was the primary determinant of the
input resistance of the cell (about 50 M�; typical values
range between 25 and 70 nS). 
i Remained a free variable
that could be used to set the gain of the cell (see below;
typical values range between 7 and 25 nS). Note that the
manipulation of 
e to adjust membrane potential fluctua-
tions may also have consequences for the firing rate of the
cell.Ge0did not affect the membrane fluctuation, so 
e

should be set first. The exact values for these four param-
eters are set in accordance to the intrinsic passive prop-
erties of the particular cell being recorded.

Variance detection

Input signals consisting in the simultaneous firing of a
population of cells occur in vivo on a background of ran-
dom synaptic noise. In order to assess how correlated
synaptic events are reflected at the soma, we use a recon-
structed multi-compartmental cell (Fig. 5A) from the rat
prefrontal cortex that received 16,563 AMPA synapses
and 3376 GABA synapses discharging in a Poisson man-
ner at 1 Hz and 5.5 Hz respectively (Destexhe and Paré,
1999). At the soma, these synaptic inputs yielded voltage
fluctuations that depended on the amount of correlations
introduced among the synaptic inputs. Fig. 5A shows sam-
ple traces in cases of low (0.1) and high (0.9) correlations
in the excitatory synaptic inputs, and the relationship be-
tween the S.D. of the membrane potential measured at the
soma and the synaptic correlation (right panel). Fig. 5B
shows that for the point-conductance model (one compart-
ment) it was possible to find a unique value of the S.D. 
e

of the stochastic variable Ge that resulted in a simulated
somatic synaptic current that yielded membrane voltage
fluctuations equivalent to the ones of the detailed model.
For comparison, we also show the curves obtained with
the reconstructed model of a cat pyramidal cell extensively
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used in other studies, and for which parameters have been
directly constrained by in vivo recordings (Destexhe and
Paré, 1999). There were no significant differences be-
tween the two reconstructed cells.

In previous models (Rudolph and Destexhe, 2001) of
pyramidal neurons, transient correlation changes down to
2 ms duration could be detected. As shown here (Fig. 5)
and previously (Destexhe et al., 2001), the correlation of
synaptic inputs translates into the variance of synaptic
conductances. Together these results predict that cortical
neurons should be able to detect brief changes in the
variance of synaptic conductance. To test this prediction,
we assessed the ability of cells recorded in vitro to detect
transient changes in the variance of their background syn-
aptic conductances. Fig. 6 shows an example of a cell that
received continuous simulated noise (Ge0�5 nS, Gi0�25
nS, 
e�5 nS, 
i�12.5 nS). Under these conditions, the cell
fired spontaneously at less than 1 Hz, and its membrane
potential fluctuated around 	68 mV�3.6 mV. At predeter-
mined times, the S.D. of the noise (both 
e and 
i) was
doubled for 30 ms every 330 ms, mimicking a 3 Hz signal
consisting of synchronous inhibitory and excitatory inputs.
The inset of panel A shows the average membrane poten-
tial and S.D. around such a pulse, across all the trials. The
average membrane potential during the signal increased,
but remained smaller than the S.D. of the membrane po-
tential before or after the signal (horizontal dashed lines).
The cell, however, fired preferentially during these 30 ms
transients, as indicated by the firing histogram across
about 100 trials (Fig. 6A). The cell was able to detect
events that were as short as 10 ms (Fig. 6B-left, dashed
curve), a time scale much shorter than the cells’ typical
membrane time constant (about 30 ms). The probability
that a spike was elicited in response to a transient de-
pended on the spontaneous firing rate of the cell. Fig.
6B-left shows the probability as a function of signal length,
for four different spontaneous firing rates, in a different cell
(continuous curves). The shortest signals this cell was able
to detect (probability �0.5) ranged from 20 ms to 65 ms as
its background firing-rate increased from 2 Hz to about
7 Hz (more than twice the frequency of the signal). As the
background firing rate increased, the probability for the
input signal to arrive within the relative refractory period of
the cell increased, and the probability of spiking in re-
sponse to the signal therefore decreased. This might ex-
plain why the same signal is better detected with low
background firing. An accurate model of the biophysical
properties of prefrontal regular spiking cells would be war-
ranted to assess the relative refractory period of these cells
and its dependence on various intrinsic currents. Unfortu-
nately, sufficient information on intrinsic currents is not yet
available for these cells. Note that for low firing rates
(�7 Hz), the detection probability was non-linear. As the
spontaneous firing of the cell increased, the probability of
detecting a spike belonging to the signal became propor-
tional to the signal length. Qualitatively similar results were
obtained in eight other cells. The point conductance model
reproduced this finding (Fig. 6B right).

Fig. 7 shows the probability of spiking of a cell that
received somatically injected current pulses of fixed dura-
tion (20 ms) and varying amplitude. In a first series of
experiments, the cell did not receive simulated background
synaptic activity. In this condition, its response was all-or-
none (dashed curves) marking the presence of a current
threshold below which signals were not detected, and
above which signals were always detected. This protocol
was repeated in the presence of simulated synaptic noise
(Ge0�7 nS, Gi0�26 nS, 
e�2.5 nS, 
i�7.5 nS, same
somatic current pulses as above). The slope of the re-
sponse curve changed, indicating that the cell was able to
partially detect signals that were below the ‘classical’
threshold. However, the detection probability remained
smaller than 0.5. At P�0.5, the ratio of the slopes in the
noise case to the no-noise case was 0.51�0.25 (n�6
cells; 19 curves with pulse widths of 10, 20 or 30 ms). Note
that the absolute values for the mean and S.D. of excita-
tory and inhibitory conductance differed slightly from cell to
cell, due to their difference in input resistance and thresh-
old. These values were tuned for each cell to simulta-
neously achieve the desired depolarization (approximately
	60 mV, spontaneous rate �3 Hz), membrane potential
fluctuations (S.D. approximately 4 mV), and input resis-
tance (approximately four times smaller than without
noise).

The variance transients are completely determined by
their duration and amplitude. Fig. 8 shows the sensitivity of
the cell to several transient increases in 
e and 
i of
various amplitude for durations of 10 ms, 20 ms and 30 ms.
In these experiments, Gi0 was set to yield a low input
resistance (Gi0�22.5 nS; Rin�36.3 M�; Fig. 3C). Since
variations in mean excitatory input did not change the cell
input resistance significantly (Fig. 3A), Ge0 was an inde-
pendent parameter that could be used to set the sponta-
neous firing rate of the cell. Ge0 was adjusted to obtain a
low spontaneous firing rate (0.9 Hz; Ge0�14 nS), 
e was
set to yield about 4 mV fluctuations in the membrane
potential (
e�5 nS), and 
i was set to 2.5�
e in accor-
dance with previous simulation studies (Destexhe et al.,
2001). In the presence of this noise, the cell was able to
detect transient variance changes of 10 ms duration and of
amplitude equal to about 1.5 times the S.D. of its noisy
excitatory inputs, while it was above chance for inputs as
small as 2.2 times the SNR (filled arrow). Without the
simulated synaptic background noise but with the cell de-
polarized to the same level as with background synaptic
noise (	62 mV), its ability of detecting current steps of 10
ms durations and varying input amplitude adopted an all-
or-none step profile (dashed curves). The SNR for detec-
tion corresponded to about 2.7 times the S.D. of the pre-
viously injected noise (open arrows). As the duration of the
signal increased, the threshold for detection decreased. In
all cases, the cell was more sensitive to its input if it was
injected with simulated synaptic background noise (filled
arrows are always to the left of the open arrows). The
points where P�0.5 in the noisy cases were 1.47 (�0.4,
n�8), 0.98 (�0.25, n�8), 0.65 (�0.14, n�8) lower than
the corresponding points of the all-or-none curves for
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pulses of 10, 20 and 30 ms, respectively (none were
higher). Note that the relative difference in SNR between
the two curves at P�0.5 is progressively reduced as the
length of the transient is increased. These results indicate
that the improvement in signal detection due to synaptic
background noise decreases as the signal duration in-
creases to about 40 ms (the approximate time constant of
the cells’ membrane). Very short transients (2 ms and 5
ms) were ineffective in eliciting spiking probabilities greater
than 0.9 with 
e transients smaller than six times the S.D.
of the background noise (data not shown). For such val-
ues, the average membrane potential variation during the
transient was typically greater than its average before the
transient (unlike Fig. 6A inset).

The coding strategies of cortical cells are still largely
unknown. The response to short signals such as described
above may only be one way of detecting information. On
longer time scales, other ways may include the modulation
of the cell’s firing rate (deCharms and Zador, 2000).

Gain modulation

In order to assess the ability of the cells to respond to
sustained rather than transient increase in their input, we
measured their responses to 3 s long current pulses in-
jected at the soma. Fig. 9 shows the firing rate of a cell
when the four parameters of the point conductance model
were systematically varied. An increase in mean excitatory
or inhibitory conductances resulted in a leftward (7.5 pA/
nS) or rightward (2.8 pA/nS) shift of the F-I curve without
any significant change to the gain of the cell (Fig. 9C and
D). The maximal firing rate allowed by the cell given its
adaptation currents (saturation) remained almost unaf-
fected by changes in mean conductances. Increases in the
S.D. of the simulated excitatory inputs resulted in a slight
shift of the F-I curve upwards (0.6 Hz/nS), and an increase
in the slope of the sigmoid fit (in Fig. 9A, with a 100 pA
input, the gain of the cell increased by 3.2 Hz/pA per nS
increase in 
e). Increases in the S.D. of inhibitory inputs
had two effects on the cell’s F-I curve. The first was to
increase its maximal firing rate for a given current pulse
amplitude. The second was to increase the mid-height
slope of the curve (In Fig. 9B, with a 100 pA input, this
slope increased by 6.1 Hz/pA per nS increase in 
i) com-
patible with other recent studies performed in constrained
excitatory and inhibitory balanced conditions (Chance et
al., 2002). The slope (also called gain) of the F-I curve
taken at mid-height between the spontaneous firing rate,
and the maximal firing rate is a measure of the sensitivity
of the cell to its inputs. A low gain (slope) indicates that
large inputs will be required to induce noticeable changes
in firing rate; at high gain, small variations in the inputs will
results in large variation in the cell’s output firing rate. Note
that for this cell, the increase in gain varied non-linearly
with 
i: a doubling in 
i with 
i�2.5 nS resulted in a smaller
slope increase than a doubling of 
i with 
i�9 nS. In-
creases in S.D. of either the excitatory or inhibitory inputs
had the same general effects on the maximal firing rate
and slope. Because the mean inhibitory and excitatory
conductances were kept constant, changing the variance

of either synaptic input had little effect on the total synaptic
conductance received by the cell, and on its input resis-
tance (not shown). To assess the robustness of our mea-
surements of slope and mid-point, we recorded from cells
in stationary conditions (same Ge0, Gi0, 
i and 
e), and we
repeatedly measured the F-I curve at regular intervals. The
mid-point currents, and mid-point slopes of the F-I curve
were obtained from the sigmoidal fits and were used to
quantitatively assess the error in working point and slope
estimation. The slope varied by less than 9%, and the
midpoint varied by less than 8% (three cells, at least 15
curves each, data not shown).

Due to the length of the experiments required to obtain
the curves displayed in Fig. 9, it was not possible to collect
data for more than three or four values for each of the four
parameters Ge0, Gi0, 
e and 
i of the stochastic model. In
order to better assess the effects of these parameters on
the gain of the cell, we studied the computational model
placed in the same condition as in the experiments. These
simulations showed that the working point of the cell was
mainly determined by the balance of mean inhibition and
excitation, and the S.D.s of excitatory and inhibitory inputs
could individually modulate the gain (the slope range due
to 
e variations was 75–89 Hz/nA and was 72–92 Hz/nA
for 
i). Simulations performed with the same model, but
using stimuli consisting of AMPA conductance changes
(instead of current transients) yielded qualitatively similar
results for the impact of the various parameters Ge0, Gi0,

e and 
i (not shown). These simulation results were in
qualitative agreement with the experimental findings of Fig.
9; the mean excitation and mean inhibition modulated the
working point, and the excitatory and inhibitory variances
modulated primarily the gain. Three currents (INa, Ikd and
IM) were therefore sufficient to capture the influence of
synaptic background noise on the I-F curve observed
experimentally.

DISCUSSION

Although the properties of neurons recorded in vitro are
quite different from those recorded in vivo, they were much
more similar when neurons in vitro were stimulated with
two stochastic processes simulating excitatory and inhibi-
tory conductances. We used the dynamic clamp technique
to inject these conductances in layer 5 pyramidal cells of
the rat prefrontal cortex. As a consequence, cells were
depolarized by about 15 mV, their input resistances were
decreased four-five-fold, and their membrane voltages
fluctuated with a 4 mV S.D. They were able to produce
action potentials at low rates (2–10 Hz) with a high coeffi-
cient of variation. We showed that the mean inhibitory
input, but not the mean excitatory input, was a key deter-
minant of the input resistance of the cell and that the
coefficient of variation of the ISIs was maximal when the
mean excitatory and mean inhibitory conductances had a
ratio of 4–5. Using a detailed multi-compartmental model
of a rat prefrontal cortex cell, we confirmed that the S.D. of
the stochastic variable representing excitatory inputs could
be interpreted as a level of correlation in presynaptic inputs
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(Destexhe et al., 2001). The cell could detect short in-
creases in the S.D. of the excitatory synaptic drive that
mimicked transient increases in the correlation of the in-
puts, as observed in vivo (Azouz and Gray, 1999). The
presence of synaptic background activity also allowed the
cell to detect transient increases in the S.D. of the excita-
tory conductances that would otherwise be subthreshold.
Using modeling and experimental methods, we deter-
mined that the mean inhibitory and excitatory synaptic
input levels set the ‘working point’ of the cell by shifting the

F-I curve rightward or leftward respectively. The S.D. of the
inhibitory inputs to the cell was the major determinant of its
gain.

Recently, Chance et al. (2002) presented experimental
and theoretical evidence that synaptic background noise
modulates the gain of pyramidal cells of rat somatosensory
cortex, consistent with the present study. Both studies
used the dynamic clamp technique, but our point-conduc-
tance model (see Experimental Procedures) allowed the
mean and S.D. of the excitatory and inhibitory synaptic
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Fig. 9. Influence of the point conductance parameters on the F-I curves of prefrontal cortical cells undergoing simulated synaptic background activity.
A: Increases in the S.D. of excitatory inputs slightly increased the slope of the response curves of this cell. B: An increase in the S.D. of inhibitory inputs
increased the slope of the response curves (gain of the cell), and increased its maximum firing rate. C: An increase in the mean excitatory inputs shifted
the response curves leftward, keeping their slope constant and increasing its maximal value only slightly. D: An increase in the mean inhibitory
conductance drive shifted the response curves toward the right, while their slope (gain) and maximal value remain constant. Panels B and C are from
the same cell. Panels A and D are from two other cells.
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background activity to be separately manipulated. This
allowed the input resistance (set by Gi0), the subthreshold
membrane fluctuation amplitude (set primarily by 
e), the
level of depolarization of the neuron (set by Ge0) and its
gain (set by 
i) to be independently varied. Consequently,
the CV values obtained here were closer to their values
measured in vivo than those reported in Chance et al.
(2002) and the cells were sufficiently adapted that their
firing rates rarely exceeded 50 Hz for large current values,
as observed in the behaving monkey in vivo. The F-I
curves of cells in the Chance et al. (2002) study were best
fit by a second order polynomial, which inevitably included
a ‘hard threshold’ below which the firing rates are zero. In
contrast, in our sample from prefrontal cortex, the cells
were best fit by a sigmoid function that had no ‘hard’
thresholds.

Another difference was that Chance et al. (2002) fo-
cused on conditions where the excitatory and inhibitory
synaptic conductances were balanced, whereas the
present study focused on ‘near threshold’ conditions where
cells have a low spontaneous firing rate, as observed in
vivo. We showed here that the gain of a cell may be
modulated separately by either excitation alone, or inhibi-
tion alone. In addition, under these conditions an increase
in the S.D. of inhibitory noise resulted primarily in an in-
crease in the gain of the cell (slope of the sigmoid curve at
mid-height; Fig. 9A and 9B), whereas Chance et al. (2002)
reported that when the excitatory and inhibitory conduc-
tances were increased together, there was a decrease in
the gain (initial slope of the F-I curve). This decrease was
also observed with a simple one-compartmental model
that included only INa, Ikd and IM currents (not shown). The
reason for the apparent discrepancy in our conclusions is
that large fluctuations of the membrane potential in the
hyperpolarizing direction tend to de-inactivate the sodium
channels responsible for spike initiation as well as activate
hyperpolarization-activated currents such as Ih. This re-
sults in a greater sensitivity of the cell (increase in gain)
when subsequent excitatory inputs arrive, consistent with
earlier studies in which the spike-triggered average shows
a hyperpolarization just before a spike (Mainen and Se-
jnowski, 1995). Large membrane fluctuations (especially
those produced by synchronized inhibition) should there-
fore yield higher sensitivity. This raises the intriguing pos-
sibility that noise-induced gain modulation may be different
in neurons that have a complex mix of intrinsic conduc-
tances that yield low firing rates, such as those in the
prefrontal cortex, compared with neurons with high firing
rates, as in the somatosensory cortex.

The study of stochastic resonance has established that
inputs may be best detected for an optimal amount of
somatic current noise (McNamara and Wiesenfeld, 1989;
Longtin, 1993; Levin and Miller, 1996; White et al., 1998;
Stacey and Durand, 2000). However, cortical neurons in
vivo are in a ‘high conductance’ state (Paré et al., 1998;
Destexhe and Paré, 1999; Destexhe et al., 2003), and their
membrane fluctuations are best described as variability in
synaptic conductances rather than variability in somatic
currents. Moreover, voltage clamp recordings in the cat

visual system in vivo showed that the large variations in
membrane conductance due to visual inputs was mainly
due to a transient (� 50 ms) increase in shunting inhibition
(Borg-Graham et al., 1998). Our results show that inhibi-
tion was indeed the most effective determinant of mem-
brane input resistance, and that in in vivo-like conditions,
cells were able to detect transient conductance changes
(10–80 ms) of the order of the ones measured in vivo.

Recent theoretical work has shown that synaptic back-
ground activity enhances the responsiveness of model
neurons to inputs that would otherwise stay subthreshold
(Hô and Destexhe, 2000). The enhancement by synaptic
background noise of the responsiveness of the model cell
was robust to changes in the dendritic morphology, distri-
bution of leak currents, the value of axial resistivity, the
densities of voltage-dependent current and the spatial dis-
tribution of synaptic inputs (Hô and Destexhe, 2000). In
this model, the input signal was carried by a set of syn-
apses that were not otherwise active. However, when ac-
tivated, the correlation of their discharges could be de-
tected in time windows as short as 2 ms (Rudolph and
Destexhe, 2001). Consistent with these results, we have
shown here that cells placed in in vivo-like conditions of
synaptic and intrinsic noise are able to detect short signals
that would have remained subthreshold without the pres-
ence of background synaptic noise (Fig. 7). A higher exci-
tatory synaptic background mean conductance brings the
membrane closer to threshold (because the reversal po-
tential for AMPA is at 0 mV) and increases the background
firing rate of the cell and its response to a given current
pulse (Fig. 9C). Conversely, a higher inhibitory mean con-
ductance pushes the membrane potential away from
threshold and reduces the spontaneous firing rate of the
cell (Fig. 9D). However, changes in the variances of syn-
aptic background noise do not change the mean conduc-
tances or the mean membrane potential, but rather change
the fluctuations around the mean (in both directions, for
both excitation and inhibition). Therefore, increases in both

e and 
i are capable of inducing depolarizing deviations
of the membrane voltage leading to an increase in the
probability to cross the spike threshold (Fig. 6).

Pyramidal cells recorded in vitro could not detect sig-
nals shorter than 10 ms unless they consisted in large
variations (more than six-fold) in the S.D. of the back-
ground noise. This discrepancy might be due to slow mem-
brane currents, such as h-currents or calcium-dependent
potassium currents that were present in vitro, but not in-
cluded in the models. Another difference is in the somatic
localization of the point-conductance clamp, whereas syn-
aptic inputs occur on dendrites where they may participate
in local interactions with intrinsic conductances. Further
work will be needed to evaluate the impact of these differ-
ent contributions.

Recent experimental work showed that the detection of
subthreshold signals could be improved by increasing the
background levels of presynaptic firing (Stacey and Du-
rand, 2001). In these slice experiments, synaptic back-
ground noise was elicited by extracellular stimulation of the
CA3 region of the hippocampus, while an intracellular re-
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cording was obtained from a CA1 cell. These results are
compatible with ours, even though the levels of synaptic
noise were lower than that expected in vivo, and even
though the input resistance of the CA1 cell during the
extracellular stimulation was probably higher than it would
have been in vivo (Fig. 2). These two shortcomings are
inherent to the slice preparation where synaptic inputs are
greatly reduced. The method we used here circumvented
these shortcomings and allowed the independent control
of the excitatory and inhibitory contributions to synaptic
inputs.

Correlation of synaptic inputs increases the fluctua-
tions of the membrane potential of the postsynaptic cell. A
sustained increase in correlation has predictable conse-
quences on the mean firing rate of the neuron and on its
firing variability (Salinas and Sejnowski, 2000; Svirskis and
Rinzel, 2000). We showed that responses to sustained
increases in their inputs (long current pulses) depended on
the variance of the noise while their thresholds for detect-
ing sustained events (�working point’) were set by the
mean excitatory and inhibitory synaptic drives. The sensi-
tivity (gain) was dynamically set by the S.D. of their inhib-
itory synaptic inputs. The synaptic background noise com-
ing from the ‘context’ is therefore a key determinant of the
specific signal processing capabilities of the cell. The dis-
tinction between the influences of the mean synaptic inputs
from the variances of the inputs has important computa-
tional consequences for cortical processing, as first ex-
plored in Sejnowski (1976, 1981). These results predict
that the responsiveness of a given cell may be modulated
by the level of synchronization present in its background
synaptic inputs. It is in general difficult to modulate in vivo
the level of background synchrony to a given cell. There is
however a useful experimental observation that may be
used to test this hypothesis. Under specific kinds of anes-
thesia, cortical networks spontaneously synchronize at low
frequencies (1–2 Hz; Steriade et al., 1993; Contreras and
Steriade, 1995; Kisley and Gerstein, 1999). This synchro-
nization occurs with fast onset and smoothly decreases
with time in a stereotypical manner and could therefore be
used as an in vivo assay of background synaptic syn-
chrony. Our results showed that the gain of a cell was
positively related (Fig. 9A, B) to the amount of variance
(i.e. correlation Fig. 5) in the background synaptic inputs.
After each spontaneously discharges, the slope of the
input/output curve (gain) would be initially steep (high syn-
chrony) and decrease smoothly. The consequence of this
decrease would be that shortly after each spontaneous
discharges (small delays) the cells would be very respon-
sive to external stimuli (fast onset, large number of spikes),
while later (longer delays, but before a new discharge) the
cell’s gain would be lower, and the cell would be less
responsive (slower onset, smaller number of spikes).
These results have indeed been observed in vivo in the rat
using auditory stimuli that were time locked to these spon-
taneous discharges (Kisley and Gerstein, 1999).

We limited our study to regularly spiking pyramidal
cells. Recent experiments suggest, however, that the de-
tection of synchronous inputs (here simulated by an in-

crease in the S.D. of the synaptic noise) could also be
effectively achieved by a network of fast spiking interneu-
rons (Galarreta and Hestrin, 2001). Because interneurons
are in general electrotonically more compact, and because
their firing rate can potentially be much higher than pyra-
midal cells, it is likely that their responses to transient or
sustained variation in their inputs will be more sensitive to
the makeup of the synaptic noise. Interestingly, the elect-
rotonus and firing rates of pyramidal cells can be signifi-
cantly modulated by substances such as acetylcholine,
serotonin, dopamine or norepinephrine that are abundant
in vivo, but absent in most in vitro preparations (Hasselmo,
1995). The exact consequences of various levels of these
neurochemical substances is still poorly understood, (see
Fellous and Linster, 1998 for a review). It is likely that
neuromodulators will change the signal detection abilities
of neurons by modulating their gain (Servan-Schreiber et
al., 1990) and their sensitivity to transient inputs. Further
work is needed to understand how the input/output prop-
erties of cells placed in in vivo conditions of synaptic inputs
are modulated by neuromodulators, and how this gain
control compares with the one obtained here by controlling
fluctuating synaptic conductances. Our study is also lim-
ited by the fact that recordings in vitro were performed at
the soma. While the OU conductances used here ac-
counted for the passive properties of typical dendritic trees,
they did not capture the eventual local dendritic computa-
tions that might occur during the course of short or sus-
tained signal transmission (Mel, 1994).

These results show that the makeup of synaptic back-
ground noise helps to dynamically determine the input/
ouput properties of individual cells. In cortical systems that
include feedback projections, this modulation can in prin-
ciple implement a top-down influence on bottom-up pro-
cessing. In the visual pathway, for example, this mecha-
nism can be used by ‘higher level’ processing centers such
as the inferotemporal cortex (IT) to modulate the activity of
low-level perceptual centers such as V1. An object activat-
ing its representation in IT would increase the synchrony of
the neural responses of IT neurons. This increase in syn-
chrony would be reflected as an increase in the variance of
the background synaptic inputs received by earlier stages
of visual processing, through the direct back-projections
from IT to V2 or V1. This increase of variance, as we
showed, could result in an increase in the gain of these
cells, thereby increasing their sensitivity to the stimulus.
This mechanism could be used to regulate attention and
also enhance signal processing.
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